"THE JOURNEY FROM BIM TO A NATIONAL NETWORK MODEL FOR RAIL"

MAKING BIM REAL

Network Rail's journey to develop a national infrastructure and capability model to underpin digital transformation and *the application of BIM on major projects in Wales and Western with a particular focus on the challenges around geospatial grids from successes to lessons to be learnt and how all of this will play in the future into the digital network model and future digital twin implementation*

5th July 2023 - 5:15pm – 6:15pm GMT

Hosted by BIM4Rail and COMIT Projects

David White, Chair BIM4Rail, HS2 Head Strategic Planning & Asset Management Stuart Young, COMIT Projects

Facilitated & Supported by:

"THE JOURNEY FROM BIM TO A NATIONAL NETWORK MODEL FOR RAIL" Meet the team: Presenters & Panelists

Peter Burnett Lead Architect: AXIOM Network Model Network Rail System Operator Presenter &Panelist

John Nolan MSc MCILIP Digital Engineering & Construction - Information Management – BIM Network Rail Western Wales Presenter &Panelist

Chris Myers Business and Data Architect Digital Rail Advisory Lead Associate Director Arup Panelist

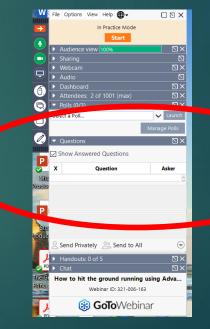
David White Chair BIM4Rail, HS2 Head Strategic Planning & Asset Management Panelist

Peter's talk will cover Network Rail's journey to develop a national infrastructure and capability model to underpin digital transformation.

....John will cover the application of BIM on major projects in Wales and Western with a particular focus on the challenges around geospatial grids from successes to lessons to be learnt and how all of this will play in the future into the digital network model and future digital twin implementation

Facilitated & Supported by:

"THE JOURNEY FROM BIM TO A NATIONAL NETWORK MODEL FOR RAIL"


MAKING BIM REAL

Questions?

https://www.linkedin.com/groups/8548306

https://www.bim4rail.org/

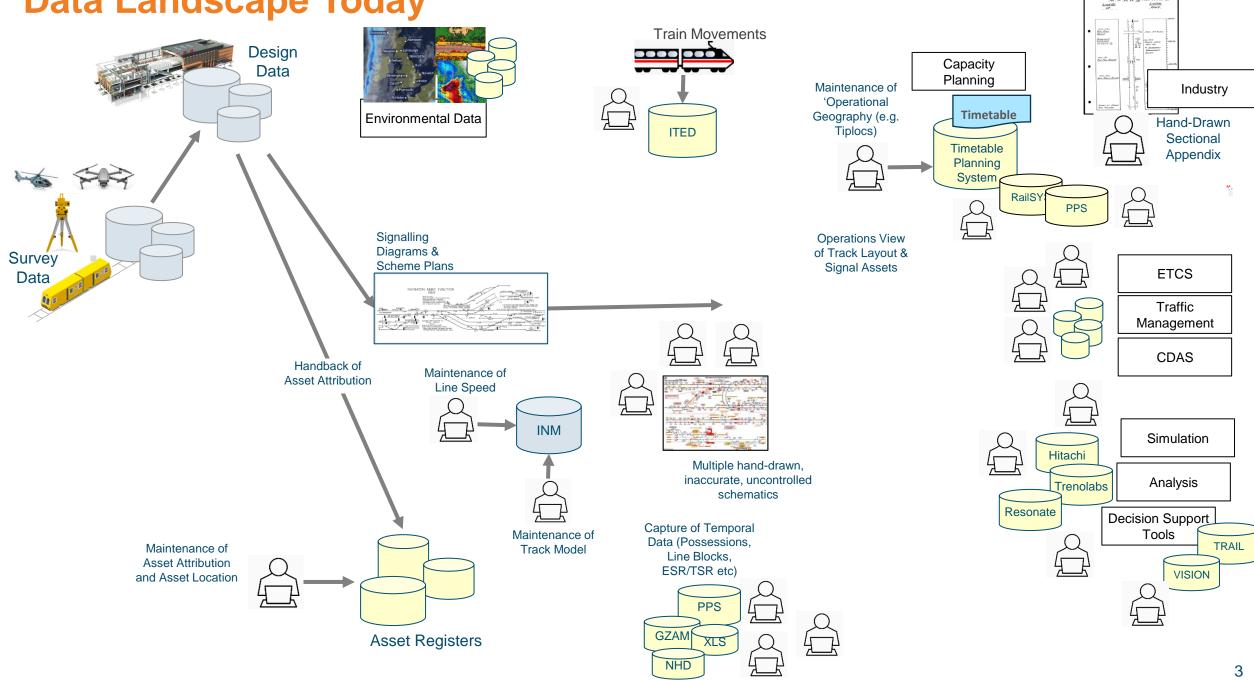
८ऄॖॗॕॴ

BIM4Rail Webinar

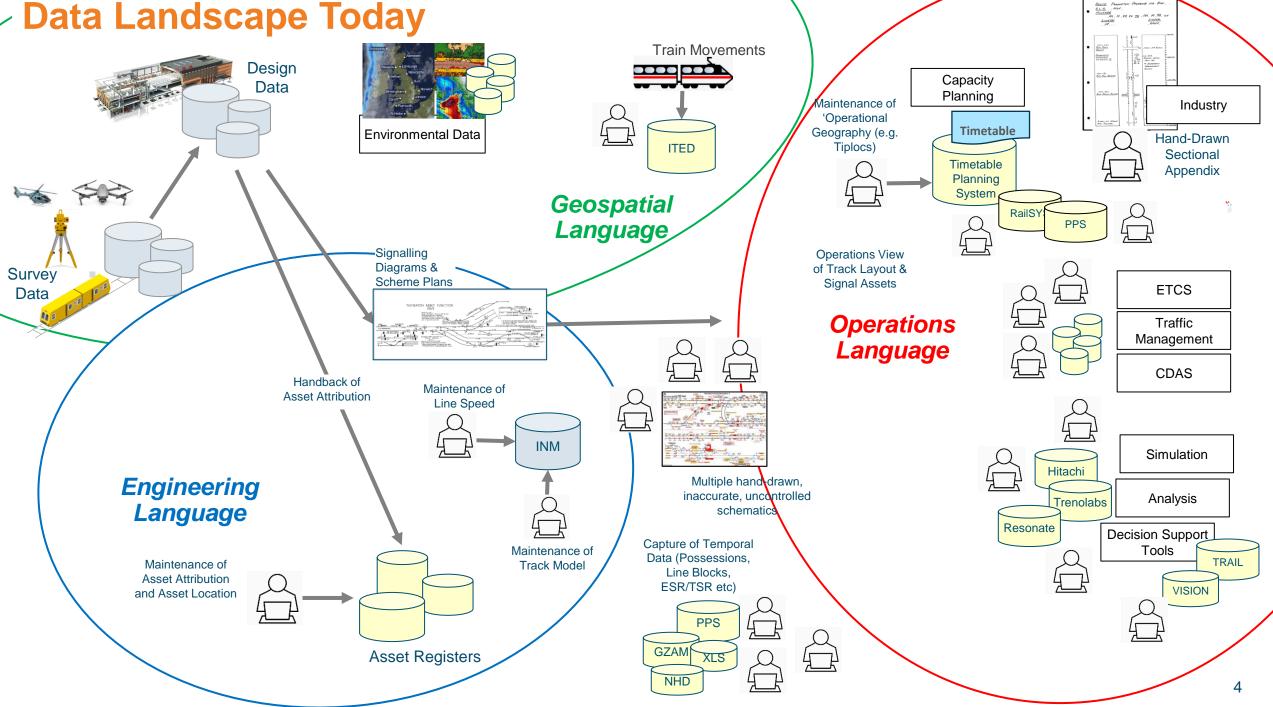
From BIM to a National Network Model for Rail

Peter Burnett

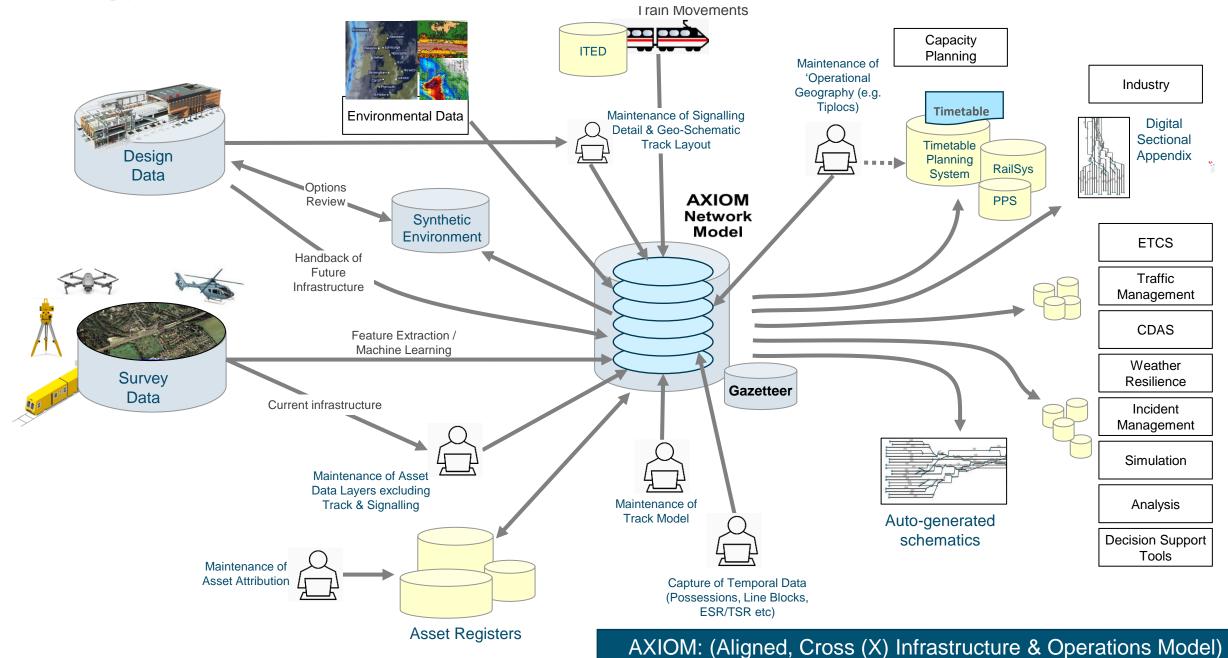
5th July 2023



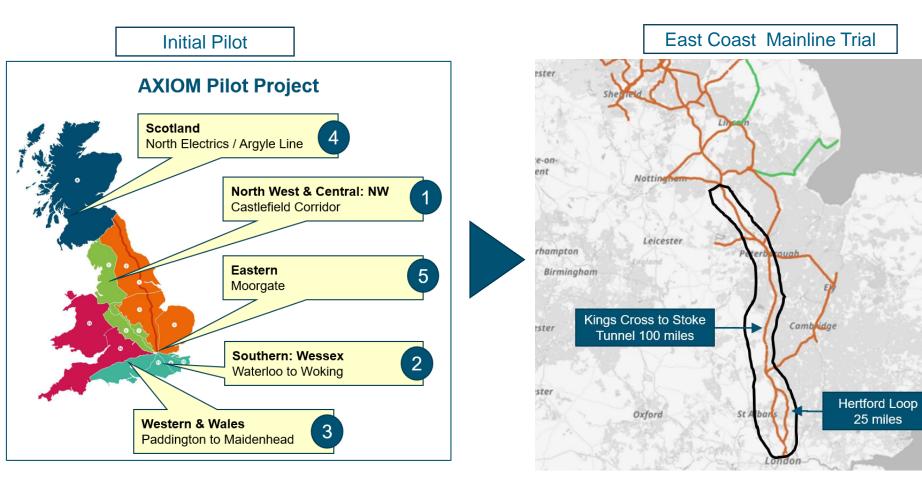
Agenda


- 1. Introduction
- 2. The data landscape: As-Is and To-Be
- 3. High level strategy
- 4. Examples of current work
 - Line Block Demonstrator
 - National Gradiant Data
 - BIM > National Network Model
- 5. Digital Twin?

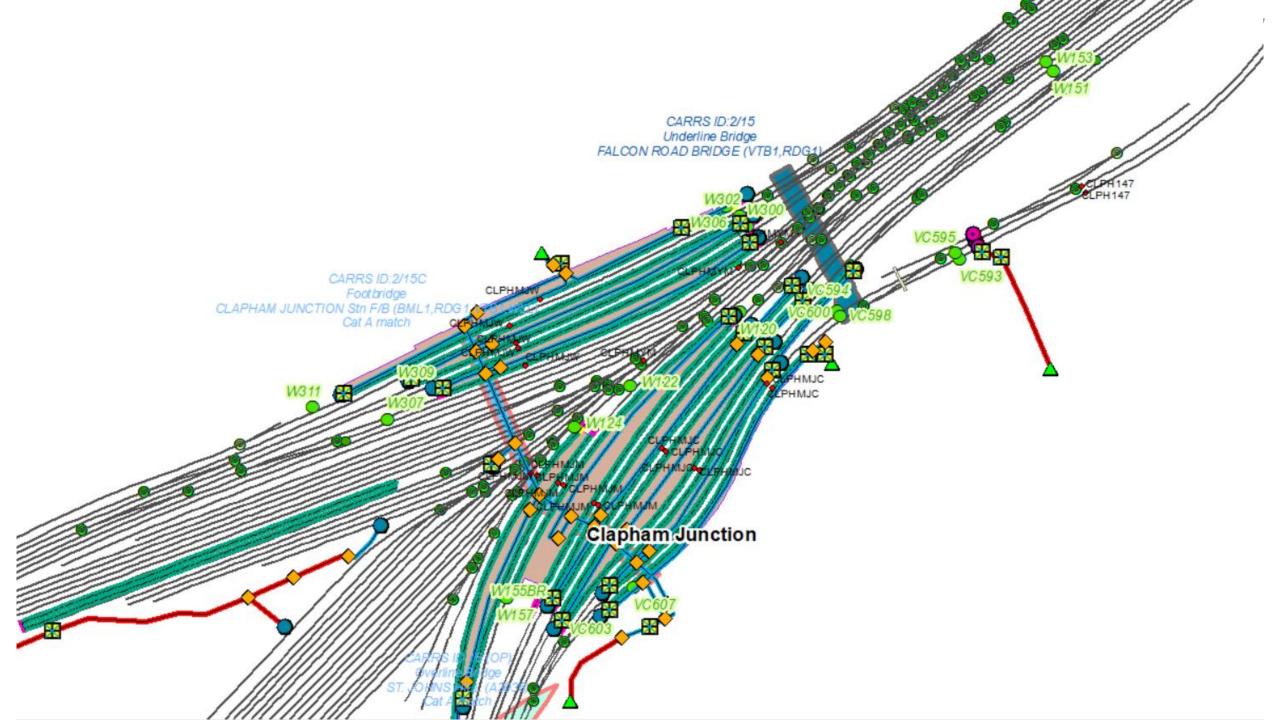
Data Landscape Today

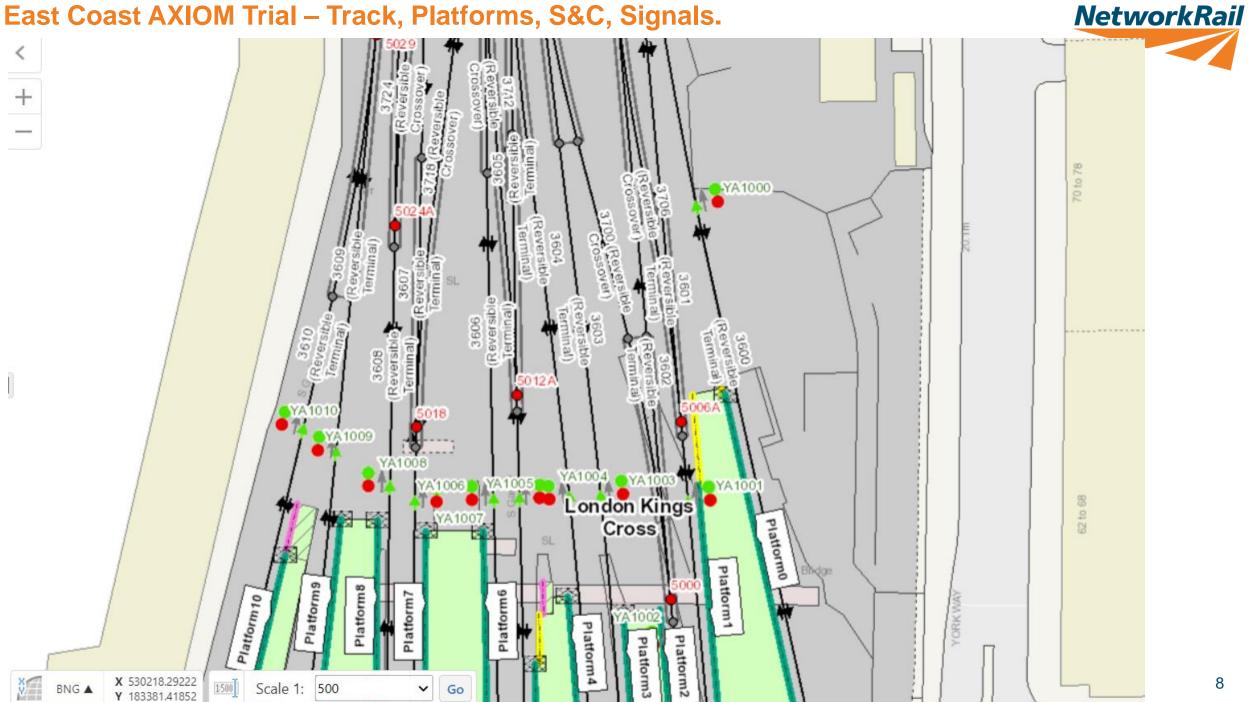


ROUTE PRESERVER

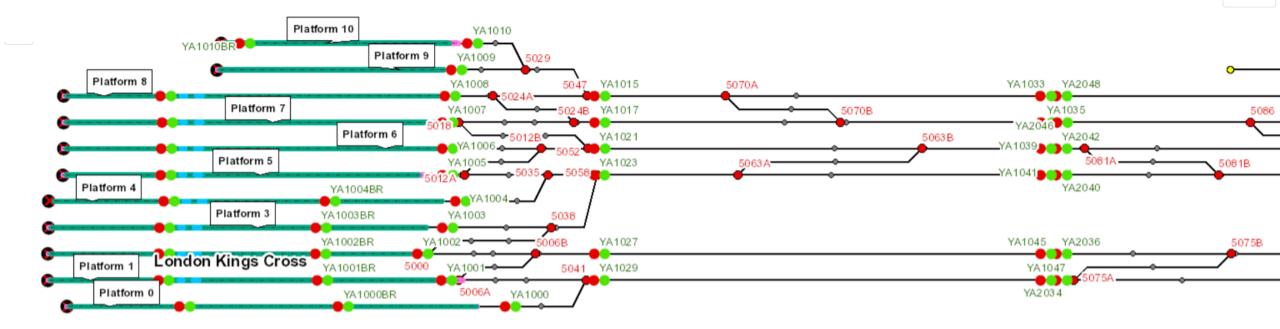

Data Landscape Today

Strategy: Future Data Landscape



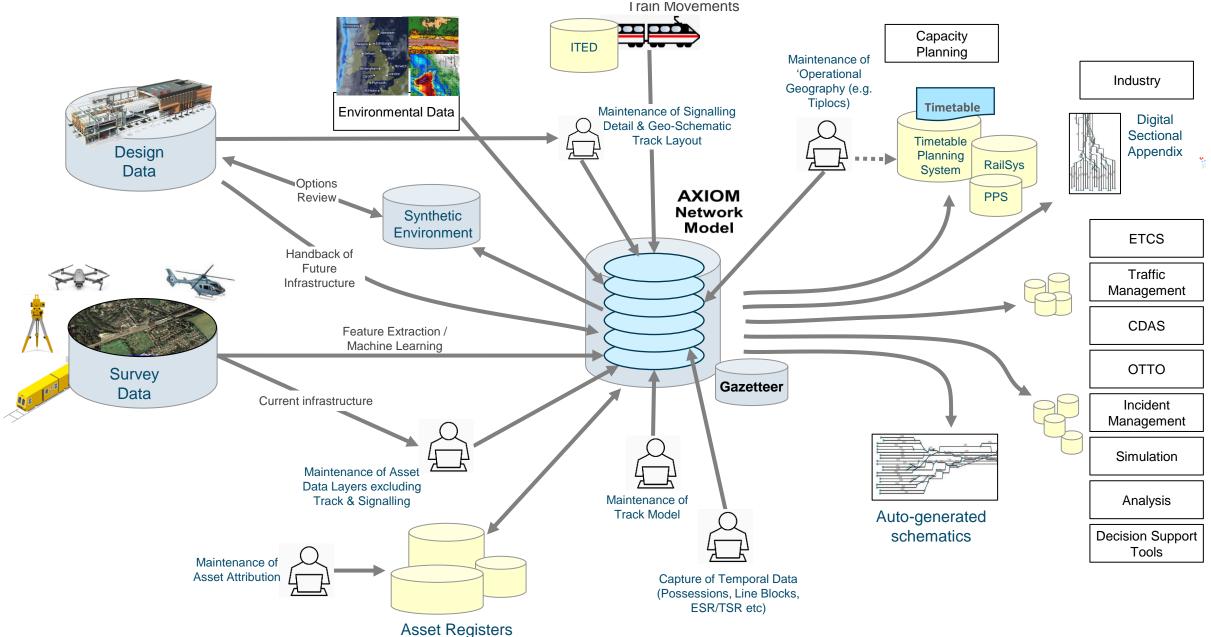


Norv

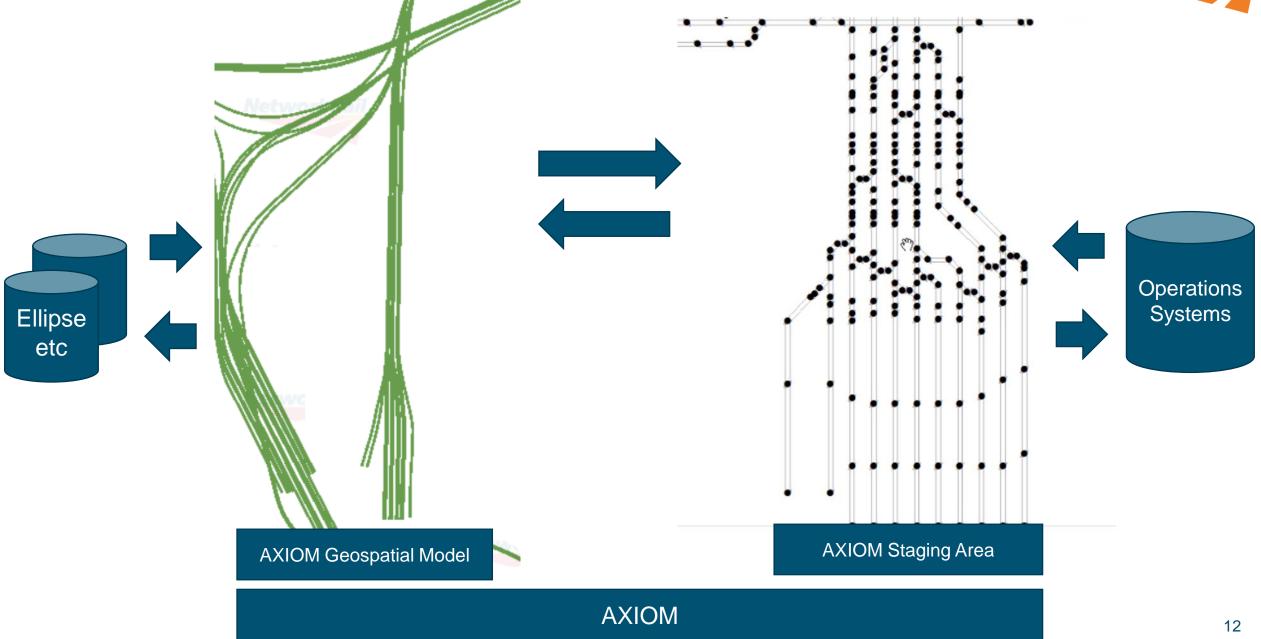

East Coast AXIOM Trial – Track, Platforms, S&C, Signals.

East Coast AXIOM Trial – Automatically Generated Schematic.

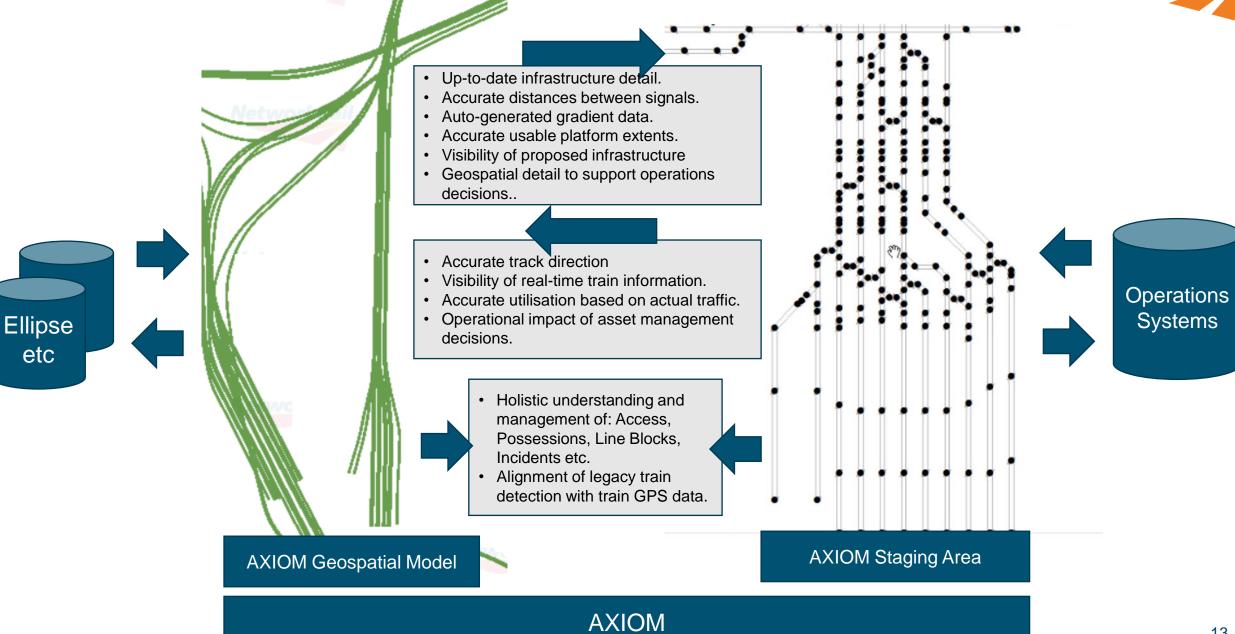
X Tools


	к	(351R
K3 46R		_

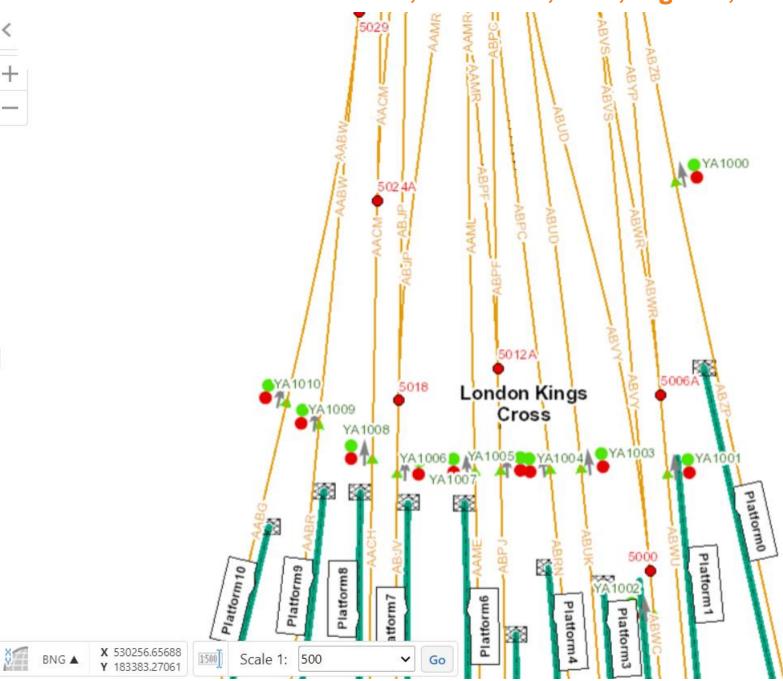
AXIOM the cross-alignment bit


OFFICIAL

Strategy: Future Data Landscape


AXIOM Approach – Alignment of Geospatial Infrastructure Data and Operations Detail

AXIOM Approach – Alignment of Geospatial Infrastructure Data and Operations Detail



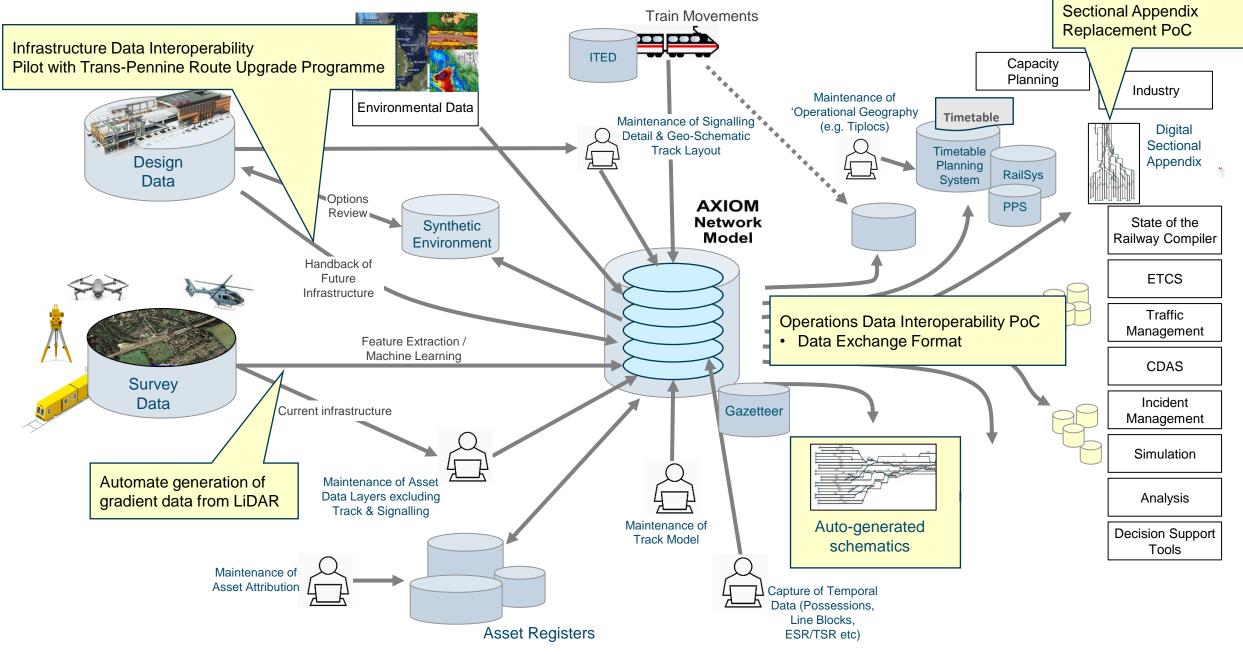
East Coast AXIOM Trial – Track, Platforms, S&C, Signals, Signal Blocks

East Coast AXIOM Trial – Track, Platforms, S&C, Signals. Signal Blocks	NetworkRail
$\frac{1}{1} + \frac{1}{1}$	Tools
S012A S012A VA 1009 S018 VA 1006 VA 1005 VA 1006 VA 1005 VA 1006 VA 1005 VA 1006 VA 1005 VA 1007 VA 1003 VA 1006 VA 1005 VA 1007 VA 1003 VA 1007 VA 1003 VA 1007 VA 1007 VA 107 VA 107 VA 107 VA 107 VA 107 VA 107 VA 107 VA 107 VA 107	
BNG A X 530201.88802 Y 183370.04141 Scale 1: 500 Y Go Go	14

East Coast AXIOM Trial – Track, Platforms, S&C, Signals, Track Circuits.

Demonstrator of aligned model

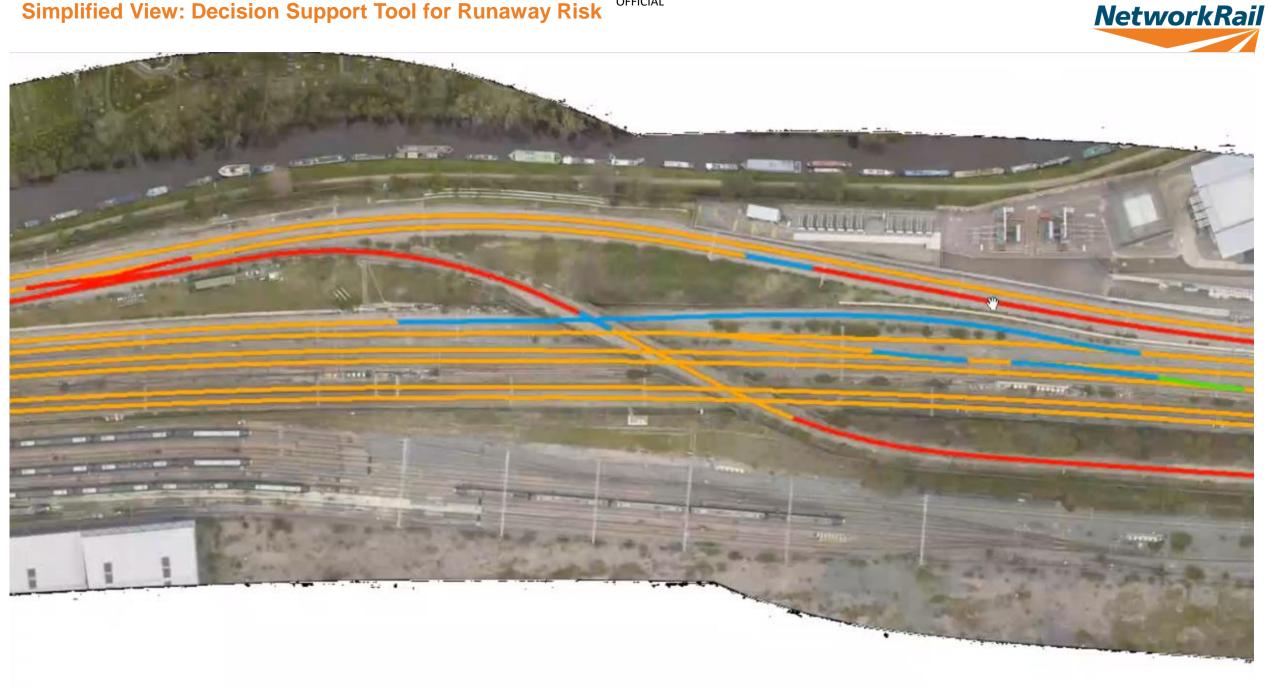
Demonstrator of Proof-of-Concept: Line Block Request


Home Initial View Identify Print Export Basic Tools	Create Line Block Clear Line Block Display Line Block - Geographic
Signal Affected itter results MP403 /pe: Entry ignal Name: MP403 ignal Class: main4aspect ignal Type: HOME	 × < I want to + -
MC458 /pe: Entry ignal Name: MC458 ignal Class: main3aspect ignal Type: HOME	
MP405 /pe: Entry ignal Name: MP405 ignal Class: main4aspect ignal Type: HOME	
Layers Layers Signal Affected	Back

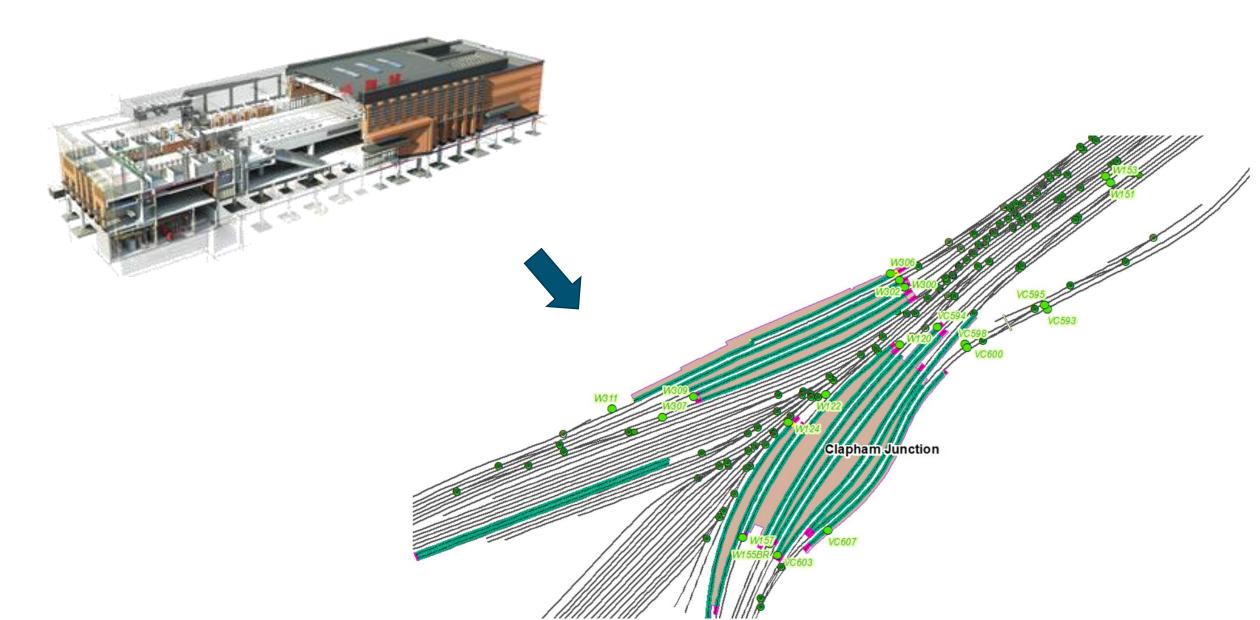
Other Initiatives

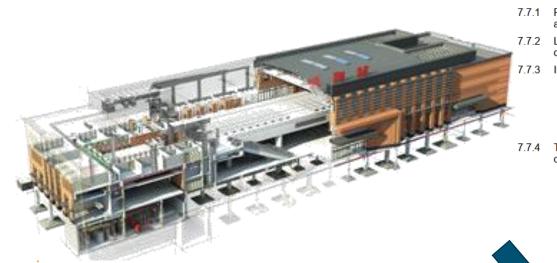
OFFICIAL

Examples of AXIOM Initiatives


Auto-Generation of Track Gradient from LiDAR Data

Key Business Drivers: Runaway Risk, ETCS, Timetable Planning

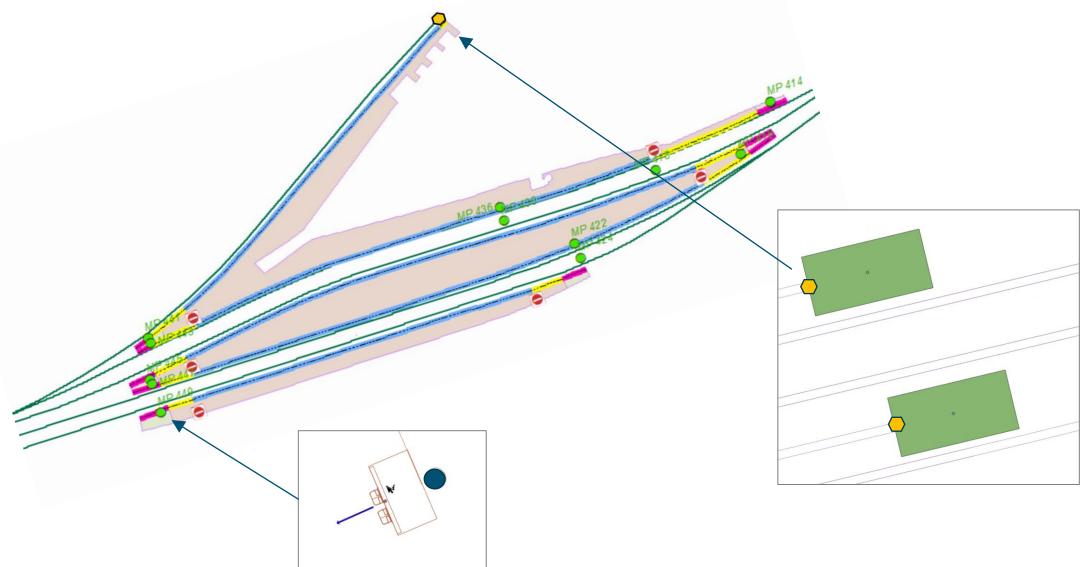



Simplified View: Decision Support Tool for Runaway Risk OFFICIAL

9.6.5 Attribute 4 - Status

Denotes the design status of the CAD data. A single character status code shall be used as specified in Table 8.

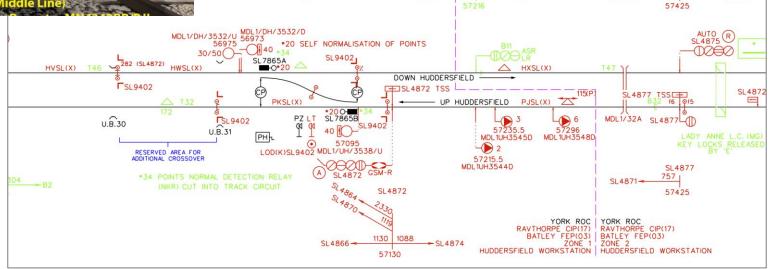
Status Code	Element Status	
E	Existing (to remain)	
м	Modified	
P	Proposed	
R	Remove, Recover or Demolish	
т	Temporary Works	
Z	Miscellaneous	


Table 8 – Status Descriptors

7.7 Reference files

- 7.7.1 Prior to final submission non-displayed reference files shall be detached in all design, drawing and sheet models.
- 7.7.2 Logical names and descriptions shall be assigned in the Reference Manager dialog box.
- 7.7.3 In the design model reference files shall:
 - a) be attached true to the co-ordinate location;
 - b) not be rotated or scaled; and
 - c) be a direct attachment, with no nesting.
- 7.7.4 The nest depth shall be set to the minimum requirements based on the depth of the file compilation method.

Clapham Junction



ΟΕΕΙΟΙΑΙ

OFFICIAL

NetworkRail

-SL4879

A Digital Twin....?

OFFICIAL

Digital Twin?

٠

٠

٠

- *Wiki*: a **digital representation of an intended or actual real-world** physical product, system, or process that serves as the effectively indistinguishable digital counterpart of it for practical purposes, such as simulation, integration, testing, monitoring, and maintenance. One of the main characteristics of digital twin technology is its connectivity between the physical component and its digital counterpart. The basis of digital twins is based on this connection, without it, digital twin technology would not exist
- *Gartner:* a **digital representation of a real-world entity** or system. The implementation of a digital twin is an encapsulated software object or model that **mirrors** a unique physical object, process, organization, person or other abstraction. Data from multiple digital twins can be aggregated for a composite view across a number of real-world entities..., such as a power plant or a city, and their related processes.
- Centre for Digital Build Britain:
 - 1. a **dynamic** model of an asset, with input of current performance data from the physical twin via **live** data flows from sensors; feedback into the physical twin via real-time control.
 - 2. a **static** strategic planning model of a system, with input of long-term condition data from the physical twin via corporate systems; feedback into the physical twin via the capital investment process
 - 3. a **realistic digital representations of physical things**.... it unlocks value by enabling improved insights that support better decisions, leading to better outcomes in the physical world

Digital Twin?

- A successful Digital Twin has a critical dependency on data quality, availability, accessibility, compatibility.
- Historically, much of the 'Digital Twin' work within Network Rail has been driven by Capital Delivery initiatives, delivering **BIM models** in a Common Data Environment for a relatively small geographic area. This has led to proposals from supply chain to extend these BIM models to deliver a fully integrated, near-real-time Digital Twin.
- Such an approach may work for an asset of limited size (e.g. a major station or a single route) but for 20,000 miles of complex infrastructure, is a business case for supporting use-cases at a **national level** realistic?
- However, we can **deliver significant value** (in terms of safety, efficiency and effectiveness) without a full Digital Twin.
- In the short term we are therefore taking a pragmatic approach, focusing on the fundamental building blocks:
 - A trusted, common **national network model (AXIOM)** to support transformation of safety, asset management and operations capabilities;
 - Data Consistency and integration across and between organisational units
 - Clearly defined and accepted, **sponsorship**, data **governance** and data **standards**; widely upheld.
 - Rationalisation of disparate legacy solutions.
 - **Collaboration** with the Supply Chain.
- Where BIM models exist, these can be utilized to build and/or enhance the network model.
- If at some point in the future, a business case can be proven for a full, integrated, national Digital Twin then the network model foundations can be extended to achieve this.

NetworkRail

Digital Twin?

NetworkRail

The Gemini Principles:

Purpose: Must have clear purpose	Public good Must be used to deliver genuine public benefit in perpetuity	Value creation Must enable value creation and performance improvement	Insight Must provide determinable insight into the built environment
Trust: Must be trustworthy	Security Must enable security and be secure itself	Openness Must be as open as possible	Quality Must be built on data of an appropriate quality
Function: Must function effectively	Federation Must be based on a standard connected environment	Curation Must have clear ownership, governance and regulation	Evolution Must be able to adapt as technology and society evolve

The Centre for Digital Build Britain. https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples

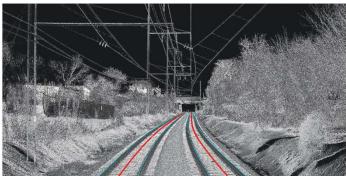
Gartner recommendation on Digital Twins:

'Seek simplicity. Avoid building a Digital Twin if business objectives can be met by basics'

Project delivery challenges around geospatial grids from successes to lessons to be learnt

John Nolan

OFFICIAL


Geospatial - Modern Data Capture

Modern, accurate, locational data capture methods come in a number of forms, which is why the standard recognises all of the following:

- Aerial imagery;
- Calibrated recording vehicles;
- Point Cloud surveys;
- Appropriately calibrated GNSS devices;
- Land surveys.
- Drones
- New Measurement Train (NMT) / Track Recording Unit (TRU)
- RILA (Rail Infrastructure aLignment Acquisition)
- Tail Lamp Camera (TLC)
- AIVR Train based video surveys

What is SnakeGrid

SnakeGrid is a geospatial coordinate reference system that provides a method for accurately representing curved or irregularly shaped areas on a flat surface. It is specifically designed for applications that involve mapping or surveying linear rail areas – Also offshore oil and gas.

SnakeGrid uses a non-linear grid pattern that follows the shape of the area being mapped, rather than using a regular grid of latitude and longitude lines. This allows for a more precise representation of the area and minimizes distortion that can occur with traditional grid systems

What is OS Grid

The OS Grid (Ordnance Survey Grid) is a coordinate reference system. It is developed and maintained by the Ordnance Survey, the national mapping agency of Great Britain.

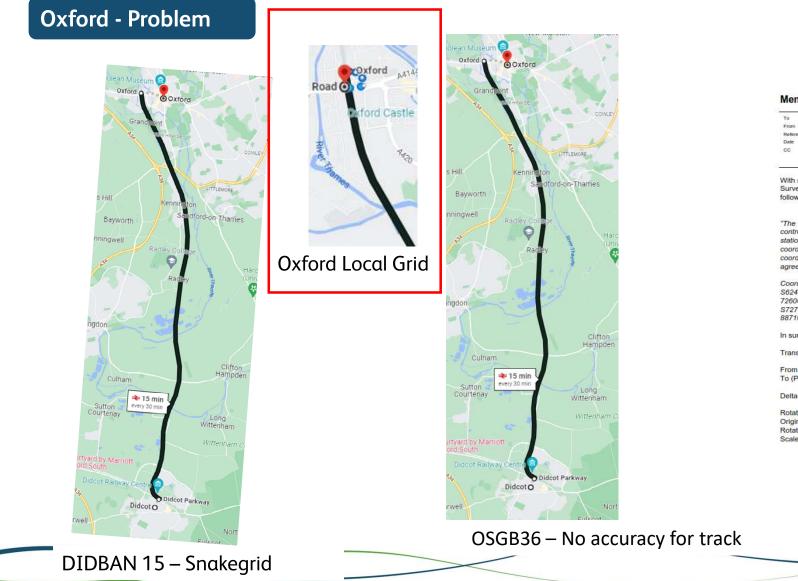
The OS Grid divides the UK into a grid network using eastings (horizontal) and northings (vertical) coordinates. It provides a systematic way to reference locations on maps and to perform accurate measurements and calculations.

The OS Grid is based on the Transverse Mercator projection, which projects the curved surface of the Earth onto a flat map. The projection is tailored specifically for the UK, allowing for minimal distortion in the region.

What is a Local Grid

Do not use local grids

Issues when different survey grids are used


Incompatibility of data: When surveys or data collection methods use different grids or structures, the data obtained may not be directly comparable or integrable. It becomes difficult to merge or analyse the data cohesively, hindering a comprehensive understanding of the overall situation or risk landscape.

Data loss or inconsistency: Integration issues can result in missing or inconsistent data points, as different surveys may collect information in varying formats or categories. This can introduce gaps or errors in the dataset, making it challenging to draw accurate conclusions or identify trends.

Time and effort: Integrating data from disparate sources that do not follow the same survey grid requires additional time and effort to reconcile and align the information. This can lead to delays in analysing the data and making informed decisions, impacting the effectiveness of risk management or safety measures.

Increased complexity: Dealing with multiple survey grids or structures adds complexity to data integration processes. It may require developing custom mapping or transformation methods to align the data, which can introduce additional layers of complexity and increase the risk of errors.

Reduced data granularity: Different survey grids may have varying levels of granularity in terms of the data captured. When integrating such data, there may be a loss of detail or specificity, which can limit the insights gained and potentially overlook critical risk factors or safety issues.

Memo

Oxford OS Transformation (W1002B-TTS-MEM-ESU-012001 P02) 12 December 2014 Reference

With reference to the query regarding the Transformation from the Ordnance Survey grid to the Site Grid on the Oxford Corridor project, I can confirm the following information:-

"The tiles were transformed using the coordinates of two widely spaced control stations. The OS data was first moved using the coordinates of station S6245 and then rotated and scaled around this point to match the coordinates of station S7179. The transformation was checked using the coordinates of the intermediate stations which were all found to be in agreement within 10mm.

Coordin	ates used	
S6245	(OS 451054.613mE 205034.197mN)	(Project 50738.037mE
72606.1	182mN)	
S7279	(OS 448415.869mE 221107.005mN)	(Project 48258.383mE
88710.3	386mN)"	

In summary:

Translate

From (OS) 451054.613mE, 205034.197mN To (Project) 050738.037mE, 072606.182mN

Delta E = -400316.576, Delta N = -132428.015

Rotation & Scale factor 50738.037mE, 72606.182mN Origin Rotation 0.569925 (decimal degrees - clockwise) Scale factor 1.000369221160

A Halcrow - Tata Steel Joint Venture

flice: Meridian House. The Crescent, York YO24 1AW. www.latastee ects com www.halcrow.com

Other Examples

Box tunnel

1.83-mile (2.95 km) tunnel was the world's longest railway tunnel when it was completed in 1841
2019 Track lowering in lieu of Overhead line electrification – Track was designed in OSGB as GWEP contract was for OLE in OSGB. This caused major confusion as track had no scale factor

Bristol Temple Meads Station

3D model was delivered by one supplier in RBEPP12 SnakeGrid. The same supplier redelivered it in OSGB at a later date.

Filton 4 track

One designer moved the compliant survey to 0,0,0 in their model and rotated / adjusted it. LOC suite was designed on top of the proposed new track.

Contractual Solution

Source of Requirement	Module Requirement	Acceptance criterion	Rationale/Supporting information
Survey	The Contractor shall create a Project Survey Technical Work scope for every survey required for Design and As Built purposes. The Contractor shall maintain a Survey Tracker outlining the principles of survey data capture and management and a list of planned and available survey data to be used on the project. UAV surveys including methodology are to be agreed with the project team prior to commission. SI & GL Environmental and Ecological Data are to be georeferenced with Easting and Northing coordinates and submitted to NR BIM team to be included in NR GIS. The Contractor survey tracker will be submitted to NR BIM manager revised for very survey submission.	Production of Survey Technical Work scope accepted by the Employer and management of Survey Strategy Tracker by Design Team and DPE as up to date and suitable for project needs during this stage of works. List of survey requirements needed for future stages and consideration given to early provision where advantageous to programme and confidence in works and design options. Details and confirmation of this requirement to be included in the BEP and accepted by the Employer	Wales and Western Survey Strategy Exchange Information Requirements NR/L2/TRK/3100

Technical Solution

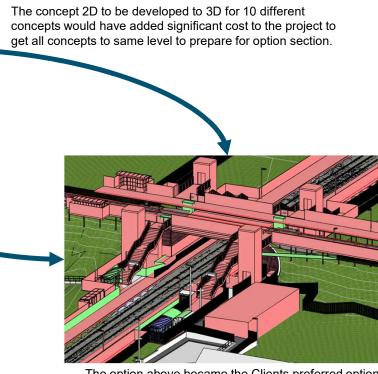
The National Transformation version 2 (NTv2) is a standard for performing datum transformations on geodetic coordinates. It is represented by a Grid Shift Binary (GSB) format file which stores a matrix of shifts to be applied to input latitude/longitude coordinates in one reference frame for conversion to another. The NTv2 format is used for a significant number of national mapping systems (including Canada and Great Britain) and is recognised by the majority of geospatially-enabled software systems. In Network Rail Track primarily uses Snakegrid

This means this will be operational in design software e.g. Bentley Apps, AutoCAD, OLE tools, Bentley Rail track and GIS for handback to Integrated Network Model (INM)

Files are converted from one grid to another in a few seconds with a single button

ey	 Coordinate System 		*
	Name	RBEPP12-Grid	
England Highway	Description	NetworkRail(UK) ETRS89 / RBEPP12 SnakeGrid	
Vetwork Rail	Projection	Lambert Conformal Conic	
TPEN11-Grid - Network Rail(UK) ETRS89 / TPEN11 SnakeGrid	EPSG Code	10280	
GBK19-Grid - Network Rail(UK) ETRS89 / GBK19 SnakeGrid	Source	Network Rail(UK)	
ECML14_NB-Grid - Network Rail(UK) ETRS89 / ECML14_NB SnakeGrid	Units	Meter	
EOS21-Grid - Network Rail (UK) ETRS89 / EOS21 SnakeGrid	First Standard Parallel	50"18'00 0000"N	
MML07-Grid - Network Rail(UK) ETRS89 / MML07 SnakeGrid	Second Standard Parallel	51°27'00.0000"N	
MOLDOR11-Grid - Network Rail(UK) ETRS89 / MOLDOR11 SnakeGrid	Origin Longitude	03°15'00.0000''W	
MRH21-Grid - Network Rail(UK) ETRS89 / MRH21 SnakeGrid	Origin Latitude	50"51"00 0000"N	
SCM22-Grid - Network Rail(UK) ETRS89 / SCM22 SnakeGrid	False Easting	372382.8292	
FNL22-Grid - Network Rail(UK) ETRS89 / FNL22 SnakeGrid	False Northing	217764.7796	
HULLEE13-Grid - Network Rail(UK) ETRS89 / HULLEE13 SnakeGrid	Quadrant	Positive X and Y	
EBBWV14-Grid - Network Rail(UK) ETRS89 / EBBWV14 SnakeGrid	Minimum Longitude	05"45'00.0000"W	
MWC18-Grid - Network Rail(UK) ETRS89 / MWC18 SnakeGrid	Maximum Longitude	00°42'00.0000 W	
CNH22-Grid - Network Rail(UK) ETRS89 / CNH22 SnakeGrid	Minimum Latitude	50°00'00.0000"N	
CWS13-Grid - Network Rail(UK) ETRS89 / CWS13 SnakeGrid	Maximum Latitude	50'00'00.0000'N 51'48'00.0000'N	
DIBA15-Grid - Network Rail(UK) ETRS89 / DIBA15 SnakeGrid	Maximum Latitude	51 48 00.0000 N	
DoPw22-Grid - NetworkRail(UK) ETRS89 / DoPw22 SnakeGrid	Datum		
GWPBS22-Grid - Network Rail(UK) ETRS89 / GWPBS22 SnakeGrid	Datum		
GWWAB22-Grid - Network Rail(UK) ETRS89 / GWWAB22 SnakeGrid	Name	RBEPP12-IRF	
GWWWA22-Grid - Network Rail(UK) ETRS89 / GWWWA22 SnakeGrid	Description	Network Rail RBEPP12 Intermediate Reference Frame	
MALS09-Grid - Network Rail(UK) ETRS89 / MALS09 SnakeGrid	Source	Network Rail UK	
OxWo08-Grid - Network Rail(UK) ETRS89 / OxWo08 SnakeGrid	Conversion Method	Grid Shift Files	
BEPP12-Grid - Network Rail(UK) ETRS89 / RBEPP12 SnakeGrid	Format	NTv2	
ShAb07-Grid - Network Rail(UK) ETRS89 / ShAb07 SnakeGrid	Direction to WGS84 or equivalent	Inverse	
SMITB20-Grid - Network Rail(UK) ETRS89 / SMITB20 SnakeGrid	Grid File Name	./UK/NetworkRail/TN15-ETRS89-to-RBEPP12-IRF.gsb	
SYC20-Grid - Network Rail(UK) ETRS89 / SYC20 SnakeGrid			
DSGB-GPS-1997 - OSTN97 British National Grid(ETRF89<>OSGB via OSTN97)	Ellipsoid		^
SGB-GPS-2002 - OSTN02 British National Grid(ETRF89<>OSGB via OSTN02)	Name	GRS1980	
SGB-GPS-2015 - OSTN15 British National Grid(ETRF89<>OSGB via OSTN15)	Description	Geodetic Reference System of 1980	
STN15.BritishNatGrid-A - OSTN15 British National Grid	Equatorial Radius	6378137.00000	
STN02.BritishNatGrid-A - OSTN02 British National Grid	Polar Radius	6356752.314140	
IntishNatGrid - Use OSGB-GPS-2015 British Nat, Grid (Mult, Regres.)	Eccentricity	0.08181919	
SGB-7P BritishNatGrid - Use OSGB-GPS-2015 OSGB (7-params) - British National Grid	Source	Stem, L.E., Jan 1989. State Plane Coordinate System of 1983	
STN02 BNG-Approx - Use OSGB-GPS-2002 preferably-OSTN02 Brit Grid Approximate(NTv2)	aren, E.E., our 1303, State Flate Containate System of 1303	
OSTN15.BNG-Approx - Use OSGB-GPS-2015 preferably-OSTN15 Brit Grid Approximate(
ondonGrid - London Grid formely Crossrall Grid			
ondonGrid2007 - London Grid 2007			
Heathrow Airport Girld 2007 - Heathrow Airport Girld 2007			
IS2 Snake 2015 - HS2 Survey SnakeGrid			
IS2 Snake 2002 - HS2 Snake Projection			
(Rail09_Snake_2015 - XRail09 Snake Projection	~		
	>		
0//			
OK Cancel			

What makes up the Project Twin



Geometrical Data

- Track
- Signals
- Signs
- Stations
- Utilities
- Buried Services
- Civils
- Lineside Infrastructure
- Neighbourhood buildings
- Vegetation
- Drainage
- Digital Terrain Model
- Ballast Generic
- Mileposts
- Chainage
- Project Designs
- Survey Data
- All the above are based on a project Grid

Benefits for getting the basics right

The option above became the Clients preferred option.

"We initially had about 10 models that were presented to the stakeholders. Some of the models were presenting some prejudged favourites which when the stakeholders saw the impact on the station made a definitive rejection. Which *in turn influenced the whole of the future* development: Shotton Station Project Manager – Development Group

"3D Modelling helped to vividly illustrate what our plans were, ensuring that the public understood exactly what we were proposing, which shaped public sentiment and in turn strengthened our argument with local stakeholders. This was in stark contrast to section one, where fear of the unknown coloured the perception of our plans and thus created scepticism within the community and local politicians" : SWRRP Comms Manager

With the introduction of BIM concepts, early optioneering was made possible. Stakeholder were able to quickly see if a solution would be acceptable. This reduced the development of options to just 4.

3D Model Benefits for Live Railway

Signal Sighting – Swindon Speed Signs

Using BIM	Using a Contractor	Internal process before BIM
Committee of 8-10 people including representative for TOC's and FOC's from different parts of the Country (average band 2 salary (£45 per hour))	Cost of locomotive for video signal sighting - £ 10,000 Cost of sign signal change using a	Committee of 8-10 people including representative for TOC's and FOC's from different parts of the Country (average band 2 salary)
- 2-3 hours TEAMS meeting	company to undertake video signal sighting @£ 5000 per change - £25,000	2 days including site visits and overnight stays Staff time - £5040 (based on 8 people)
Staff - £900 (based on 8 people)	1 day site visit - Staff time - £2520 (based on 4 people) Travel costs – 4 people £50 per person per day £200	Overnight Costs based on 3 people @ £250 pp - £1500 Travel costs – 5 people £50 per person per day £500
BIM Team costs - 1 day x 1 person £350	Planning/Possessions - £1800 Look Out/COSS/SSWOP - 4 people @ £550 per day = £2200	Planning/Possessions - £1800 Look Out/COSS/SSWOP – 4 people @ £550 per day = £4400
£1250	£39,920	£13,240

3D Model Benefits for early AIP – Outline Design

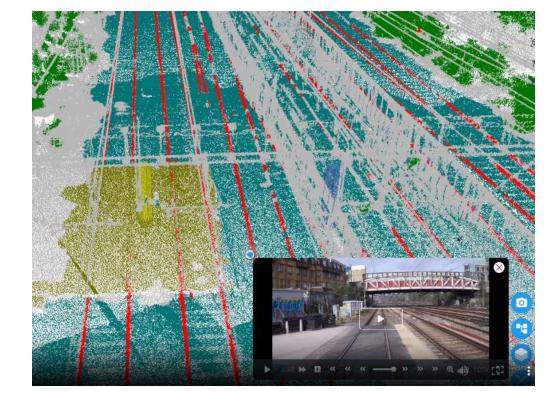
12

Are drawing needed for every stage of development?

Oxford Station – New Entrance (Grip Stage 3)

Using BIM	Using Consultants
Internal staff costs - £20,000	Quote from consultant for detailed drawing £650,000 – please note this is the baseline quote and does not include any changes to the design which would have been requested.
Designs suitable for planning permission process	Level of detail not required for planning permission
Quick turn around for any changes requested (approx 1 week)	Up to 6 weeks for any changes requested
Other Benefits: Used for Threat and Terrorism training Will benefit SPEED Can be used by other teams such as Maintenance for planned works (reducing site visits)	Do not own the drawings
£20,000	£650,000

The Future - Atlas


Background Data :

- Satellite Imagery
- NR Route Data
- 3D City models

Data Provided :

- Forward facing LIDAR 762 GB
 Forward Facing Video 9.9GB
 Thermal Video 19.2GB
 Drone Video 138MB
- Drone LIDAR 11.7GB

Using algorithms geopositioned video feeds and different point cloud and surveys were mapped to he correct ELR and Track ID

NetworkRail

13